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PREFACE

Part of the' ProJect RAND research program consists
of basic supporting studies in mathematics. The mathe-
matical research presented here deals with an inverse

problem in automatic control theory.
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SUMMARY

The authors investigate the inverse of a basic
problem of automatic control theory, namely, being
glven an optimal policy and the equations and inequali-
ties representing the constraints of the problem, they
seek the criterion function or functions that lead to
this policy; methods of solution are found in some

simple cases.

s



PRH‘ACE. L] o o ] . L]

SUMMARY., + « ¢ & « &

Section

1.
2.
3.
4,
5.

INTRODUCTION .
SCALAR CASE. .

] Ve

CONTENTS

.

THE FIRST-ORDER EQUATION
MULTIDIMENSIONAL CASE.

DISCUSSION . .

REFERENCES . . . . .

i1
i11

(6 TR — S SURRY \b S




AN INVERSE PROBLEM IN DYNAMIC PROGRAMMING
AND AUTOMATIC CONTROL

1. INTRODUCTION

One of the baslc problems of modern control theory
18 that of minimizing a functlional

T
(1'1) J(x:y) "f g(x,y)dt,
o .

where x and y are N—dimensional vector functions

subject to the relations

(1.2)(a) x(0) = ¢,
(0) = hix,y),

() r(xy) <0, 1=1,2,... .k

Problems of this nature may be attacked by means of
classical variational techniques and extensions 111, [2],
or by means of dynamic programming. The latter emphasizes
The physical concept of feedback control, since it
attempts to determine directly the optimal policy

v = v(c,T) as a solution of the equation

(1.3) fq = max (g(e,v) + (graa £,n)l,
v

where ,ri(c,v) {0, 1=1,2,...,k, and

(1.4) £(c,T) = min J(x,y).
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In this Memorandum we inltiate investigation of an
inverse problem of some importance: '"Given the optimal
policy v = v(¢,T) and the descriptive equations of
(1.2), what criterion function possesses this optimal
policy?" The study of inverse problems forms a chapter
in the calculus of variations, with emphasls lald on
determining Lagranglans having a glven family of curves
as Euler arcs. (See [4], [5].)

In the simple case where no constraints are present
and h(x,y) & y, we obtain a simple linear partial
differential equation which, in principle, determines £
and g. In some cases, this leads to an effective

analytic solution.

2. SCALAR CASE

Consider the probvlem of minimizing

T
(2.1) =J[ g{u,u')dt,
0]
with u(0) = ¢, where u(t) is a scalar function.
Writing f(c,T) for the minimum value, we obtain in the
usual fashion [3] the equation

(2.2) fo = min [g(c,v) + vfc].
v

This in turn leads to the two equations
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(2.3) fo = gle,v) + vE s
0= &, + fé,
or
(2.4) fp = & = Ve,
fc == g,

Eliminating f by partial differentliatlion, we have the

equation
(2.5) (g -ve), =~ (&)

which, in principle, determines g, glven the function
v(c,T).

This equation in g 1involves second partial
derivatives with respect to v and is not immedlately

tractable.

3. THE FIRST-ORDER EQUATION FOR fi,
Returning to (2.3), let us proceed in the following
fashion. Write |

(3.1) (fT - Vfc)T = g(c,v)T = &,Vp =~ vac,

upon taking account of the second equation of (2.3).

Hence,

(3.2) fop = Vpfo = VEgp = — Vpfo
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or

(3.3) (fp)p = v(fg), = O,

g8 flrst—order linear equation for fT, gliven the
function v = v(e¢,T). Once f 1s determined, we
obtain g from (3.3).

&3 1s lmmedlately seen, the determination of fT
is qulte simple 1f we ask for a criterion function which
ylelds an optimal policy of the form v(c,T) = g(c)k(T).

4.7 MULTIDIMENSTIONAL CASE

Consider the multidimensional problem. The basic

equation 1s

(%.1) fp = min [g(c,v) + (grad f£,v)].
v

In terms of the components, we obtain the equations

N
(4.2) £ = glc,v) + 1§1f°1v1’

0= gvi + fci,

which yleld, in exactly the same fashion as before, the

equation

N
(1"'3) (fT)T = 151(1"1\)01\71.
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Agaln, the determination of fT’ given that

v(c,T) = @(c)k(T) (where k(T) is a scalar and ¢(c)
18 a vector), 1s reduced to a conventional problem in
first—order partial differential equations which can be

treated by means of characteristices or otherwlse.

5. DISCUSSION

Finally, let us note that if one of the significant
functions of a variational problem i1s given, 1t is
frequently possible to form equations for the others in
terms of it. For example, if the integrand g(c,V)
1s given, then 1t 1s possible to find a first-order
partial differential equation for the optimal contrel
function v(c¢,T). In fact, upon expanding, we see that
equation (2.5) yields the desired relationship. These
observations have interesting consequences in analytical
dynamics and control theory which will be discussed

elsewhere.
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